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In a AABC, let a,b,c be its side lengths
- its circumradius and r - its inradius, prove that
@) lVa+1/b+1/c < /3 /(2r)
(b) 1/a+ 1/b+ 1/c < (1/43)(1/r + 1/R)
(€**) 11/3/(5R+12r) < 1/a+1/b+ 1/c < (1/J3)(5/(4R) + 7/(8r)).
Solution by Arkady Alt , San Jose, California, USA.
Letx =s—a,y =s5s—-b,z:=s—candp = xy+yz+zx,q := xyz.Also assume s = 1
(due to homogeneity of inequalities. Thenx+y+z = 1,x,y,z > 0,a = 1 —x, b =1 —y,
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c-1—z,ab+bc+ca—1+p,abc-p—q,7+z+C e = Jq-R = J_
2 2
and noting that ¢ = xyz(x + y +z) < (xy+y§+zx) = pT we can to proceed to the
proof of inequalities (a),(b),(c) in p,q notation:
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Inequality in (a) becomes <—— <= 2(1+p) < ——~.

quality in (a) =47 =23 (1+p) Vi
Since £—% as function of ¢ decrease in (0,p?/3] then % -2(1+p) >
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Inequality in (b) becomes
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Since —% +3./q as function of ¢ decrease in (0,p?/3] ( + 3t decrease for ¢ € (0, ./p/3 ]

and /q < p/J3 < [p/3 because p < 1) then %(%+3ﬁ>—(l+p) >
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Remark.
Note that — ( —) 3 because R > 2r (Euler Inequality) and
3 R 2 -
J3 1 _ J3(R-2r) . - . :
5 f (— + —) = T.Thus, it was sufficient to prove inequality (b).
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Well known inequality (Soltan and Meydman) —— < - + — + - < ——
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but > 1/r + 1/R) because - -+ ) =
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ince L (5 4 1)< 1 (1, 1) 43 inequal
Since 7 (4R +3 ) < 73 (,, + R) < 2 then proof of inequality
1,1, 1 1/5 .7
(CR) 4+ p T < J_( Rt )be at the same time proof of inequalities in (a)
and (b).
But proof of inequality (CR) is much more difficult then two others.
Proof.
. : 1+p 1 (5 4J_ 7 )
In p,q notation inequality (CR) becomes —=- < =
P.q quality (CR) =0 = 5\ 3p-q 8/

1+p < Tp + 33q PN 1 ( Tp )
< l+p < 33 q+— =
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Note that function 1089z + ; decrease in (0 3 and 2 3 <33 ©P<qr
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Thus 1089¢g + 49; as function of ¢ decrease in (O, pT }
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But unfortunately %as upper bound for ¢ isn’t good enough for proof of inequality (1)
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In that situation remains only way, that is to use the best upper bound for ¢ which can
give a criterion for the solvability of the Vieta’'s system of equations
a+b+c=1,ab+bc+ca=p,abc = qginreal a,b,c, namely inequality

(2) 27¢*-2(9p—2)g+4p3 —p> < 0.

This inequality solvable in real ¢ iff p < % and being solved with respect to ¢ in particular

9 —2+2(1-3p) /1—3p
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and even more sharp inequality g < can'’t provide proof of (1).

give us attainable upper bound for g, namely ¢ < g, :=

Denoting ¢ := /1 —3p we obtainp = I_th and g, = a +2t2)§1 0" ,
whereO§t<1<:>0<p§%.

Then
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2(105¢% — 961 + 32(1 — t3))
1442t + 1) -
because 105¢2 — 961 + 32(1 — £2) > 9612 — 96t + 32(1 — £2) = 32(1 —¢)* > 0.
Proof of inequality
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In p,q notation 5R + 12r =

1
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4J_ +12 /g = 177 and inequality (CL)

443 jq 1+p 44,3 1 5p 43q + 5p
becomes 5p+43q Sp_q = T+ sp_q | 43./9 + /7 = ©-9) /7 .
ince 2. 5 P Sp i
Since 3 3 > g then 43 /g + /7 decrease as function of ¢ and, therefore,
decrease —9t P Hence, -H34+P 443 . _$g.+5p 44./3
-9 J9 e-¢)Jg l+p = (p-q) g 1+p
and
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27¢2(18491* — 1505213 + 1100472 + 3872t + 352)
Qi+ 1)(t—1D*(t-2)* @ +2)*
11004¢2 + 3872 + 352 — 1505213 = 11004(r2 — £3) + 3872(t — £3) + 176(1 = £2) + 176 > 0.
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